Globally Convergent Parallel MAP LP Relaxation Solver using the Frank-Wolfe Algorithm

نویسندگان

  • Alexander G. Schwing
  • Tamir Hazan
  • Marc Pollefeys
  • Raquel Urtasun
چکیده

Estimating the most likely configuration (MAP) is one of the fundamental tasks in probabilistic models. While MAP inference is typically intractable for many real-world applications, linear programming relaxations have been proven very effective. Dual block-coordinate descent methods are among the most efficient solvers, however, they are prone to get stuck in sub-optimal points. Although subgradient approaches achieve global convergence, they are typically slower in practice. To improve convergence speed, algorithms which compute the steepest -descent direction by solving a quadratic program have been proposed. In this paper we suggest to decouple the quadratic program based on the Frank-Wolfe approach. This allows us to obtain an efficient and easy to parallelize algorithm while retaining the global convergence properties. Our method proves superior when compared to existing algorithms on a set of spin-glass models and protein design tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Barrier Frank-Wolfe for Marginal Inference

We introduce a globally-convergent algorithm for optimizing the tree-reweighted (TRW) variational objective over the marginal polytope. The algorithm is based on the conditional gradient method (Frank-Wolfe) and moves pseudomarginals within the marginal polytope through repeated maximum a posteriori (MAP) calls. This modular structure enables us to leverage black-box MAP solvers (both exact and...

متن کامل

Globally Convergent Dual MAP LP Relaxation Solvers using Fenchel-Young Margins

While finding the exact solution for the MAP inference problem is intractable for many real-world tasks, MAP LP relaxations have been shown to be very effective in practice. However, the most efficient methods that perform block coordinate descent can get stuck in sub-optimal points as they are not globally convergent. In this work we propose to augment these algorithms with an -descent approac...

متن کامل

Lp-Norm Constrained Coding With Frank-Wolfe Network

We investigate the problem of Lp-norm constrained coding, i.e. converting signal into code that lies inside the Lp-ball and most faithfully reconstructs the signal. While previous works known as sparse coding have addressed the cases of `0 "norm" and L1-norm, more general cases with other p values, especially with unknown p, remain a difficulty. We propose the Frank-Wolfe Network (F-W Net), who...

متن کامل

Modification of the Wolfe Line Search Rules to Satisfy the Descent Condition in the Polak-Ribière-Polyak Conjugate Gradient Method1

This paper proposes a line search technique to satisfy a relaxed form of the strong Wolfe conditions in order to guarantee the descent condition at each iteration of the Polak-Ribière-Polyak conjugate gradient algorithm. It is proved that this line search algorithm preserves the usual convergence properties of any descent algorithm. In particular, it is shown that the Zoutendijk condition holds...

متن کامل

An Efficient Message-Passing Algorithm for the M-Best MAP Problem

Much effort has been directed at algorithms for obtaining the highest probability configuration in a probabilistic random field model – known as the maximum a posteriori (MAP) inference problem. In many situations, one could benefit from having not just a single solution, but the top M most probable solutions – known as the M-Best MAP problem. In this paper, we propose an efficient message-pass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014